

Nano Si anodes

Prof. Gleb Yushin

Alexandre Magasinski^a, Bogdan Zdyrko^b, Benjamin Hertzberg_a, Patrick Dixon^a, Frank Grant Jones^a, Jorge Ayala^d, Thomas F. Fuller^c, Igor Luzinov^b and Gleb Yushin^a

- a School of Materials Science & Engineering, Georgia Institute of Technology,
- b Department of Material Science, Clemson University,
- c School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA
- d- Superior Graphite, Chicago, IL

Support:

NASA Contract # NNC08CB01C
NASA Contract # NNX09CD29P

Li-ion Batteries

- ➤ Higher capacity of electrodes leads to higher **Specific Energy** of Li-ion batteries
- ➤ Fast Li transport within electrodes leads to higher **Specific Power** of Li-ion batteries

Power for Electronics, Electric cars and HEV

Power for Aerospace

High Capacity Anodes for Li-ion Batteries

Replacing Graphite by Silicon will increase specific capacity by up to 10 times

- ➤ But... simple replacement of C particles by Si particles does NOT work due to rapid electrode degradation
- ➤ Main reason: 4x volume changes in Si particles upon Li insertion and extraction
- Additional issue: low conductivity of Si and low diffusion coefficient of Li in Si

Problems with Si Anodes: Binder Degradation

➤ No binder has been demonstrated to offer acceptable performance when used in Si anodes

Strategies

Novel binders

(1)

Novel Si-C composite particles which do NOT change volume and thus do NOT require special binders

Binders-FREE electrodes

(3)

(2)

(1) Novel Binders

NASA Contract # NNC08CB01C

Novel Binders for Si Anodes

•Performance of the Si anodes based on novel binders can be greatly superior to that o f the traditional graphitic anodes

^{* -} Capacity is based on the weight of the active material (Si)

Novel Binders for Si Anodes

Initial approach: EPB

- Epoxidized polybutadiene (EPB) low cost binder
- Optimize mechanical, adhesion and other properties of the EPB
- Copolymers with various monomers are available
- ➤ Crosslinking can be done in dual way: residual double bonds can be reacted radically; created epoxy groups can be crosslinked thermally
- ➤ Glass Transition Temperature can be as low as 100C

- Degree of epoxidation can be tuned via reaction time
- Epoxy groups will enhance adhesion of the binder to Si, carbon and Cu

Novel Binders for Si Anodes: EPB

EPB/Graphite electrodes

EPB/nano Si electrodes

- Good performance with carbon active material
- Rapid degradation with Si
- Huge Irreversible Capacity losses (not stable SEI)

Novel Binders for Si Anodes: EPB

- > EPB is electrochemically stable
- Variations of mechanical properties do NOT improve anode performance
- Porosity does NOT affect cycling properties of the anode

Electrochemical stability

Mechanical properties (porosity) of the EPB binder

Novel Binders for Si Anodes: EPB

Dispersivity issues?

- With optimized we obtained suspensions <u>stable for days</u>
- > Electrodes very uniform
- ➤ But.... Dramatic improvements in dispersvity do NOT improve anode performance

- But... Why EPB does NOT work?
- Si-binder interface is the key!!!

Novel Binders for Si Anodes

- Solubility in organic but ecologically friendly solvents Si surface will not get oxidized
- Very high concentration of "good/useful" functional groups Si surface can be fully coated/protected with these groups
- Tunable mechanical properties, and solubility (via copolymerization with other functional monomers) can optimize the performance
- Can regulate the molecular weight can optimize the performance

Novel Binders for Si Anodes

Novel Binders for Si Anodes: Polyvinyl Acids

- ➤ UNEXPECTED PROBLEM new batches of Si nanopowder exhibited lower conductivity and did not work 🙁
- > SOLUTION: Carbon coatings
- ➤ Approaches: (1) CVD, (2) deposition of polymers on the Si surface and pyrolysis

C/10

Capacity is given per weight of active material

(2) Si-C composite particles which do NOT change volume during Li insertion/extraction

NASA Contract # NNX09CD29P

Porous Si-C Composite Electrodes

- ➤ Porous Si-C composite particles may overcome the limitations of non-porous Si-C materials.
- ➤ Pre-existing pores will provide the volume needed for Si expansion and allow for fast transport of Li ions

- But... How to do it?
- ➤ If Si is 10-30 nm for fast Li transport, the porous C should have interconnected pores in the range of ~34-102 nm. **Such carbons** are **not available** commercially
- > Templated C materials too expensive
- ➤ Uniform deposition of Si nanoparticles inside the narrow pores of large C particles is challenging

We Need Hierarchical Bottom-up Approach!

- ➤ IDEA: deposit small Si nanoparticles on low-cost open C nanoparticles and self-assemble them into granules
- > Small nanoparticles tend to form adhere to surfaces / agglomerates
- ➤ Nanoparticle assemblies can then be formed into spherical granules using a low-cost process, known as **granulation** or **balling**
- ➤ **Granulation** is often used in the pharmaceutical and food industries, but it remains uncommon for energy storage applications.

- ➤ Use annealed carbon black (CB): open structure, very low apparent density, high specific surface area (~ 80 m²/g), ultra-low cost (10 times cheaper than graphite)
- Si deposition by Chemical Vapor Deposition (CVD): SiH₄→Si + 2H₂
- ➤ Use hydrocarbon (propylene) as a binder for granulation: no Si oxidation; transforms into conductive, Li-permeable carbon upon annealing

- Control over the particle size, pore size and composition of the composite:
- Size of Si nanoparticles is determined by Si CVD (time, temperature, pressure)
- Size of Si-C spheres is determined by the granulation process (temperature)
- Pore size is determined by the size of the branches in the nanocarbon, the size of the deposited Si nanoparticles and the amount of the binder

After Si deposition:

After granulation:

- > Greatly improved handling, reduced dustiness, increased bulk density, minimized health hazard
- ➤ The specific reversible deintercalation capacity ~ 1950 mAh/g at C/20: 6 times higher than that for graphitic anodes
- ➤ The specific capacity of the Si nanoparticles alone was estimated as ~ 3670 mAh/g, which is the **highest value ever reported for nanoparticles**.
- ➤ The pores available in the composite granules for Si expansion during Li insertion allowed for efficient and **stable anode performance**
- ➤ Outstanding high rate capability. For the same specific current value (2.98 A/g), our C-Si electrodes showed capacity in excess of 1500 mAh/g, which is over 37 times higher than that for graphites of comparable size.

(3) Binder-FREE electrodes

Effect of curvature and Si-C interphase

Synthesis:

Idealized performance:

Effect of curvature and Si-C interphase

- ➤ Si expands upon Li insertion and C does not. Will continuous interphase survive? Under what conditions?
- What is the effect of curvature? Positive vs. negative?

Effect of curvature and Si-C interphase

- ➤ Inner Si tube <u>compresses</u> and delaminates from the outer C tube after cycling
- ➤ However, it does NOT happen for either thin Si coating or for Si coating the external surface of CNT

VANTA coated by Si

Multi-walled VACNTA:

- Acetylene precursor
- Water vapor was used to stabilize the growth
- ➤ Growth rate > 0.1 mm/ min allows for low cost VACNTA synthesis

CVD coating by Si

(collaboration with Jud Ready, GTRI)

VANTA coated by Si

CNT transferred onto Cu:

Idealized performance:

VANTA coated by Si

Thank you for your attention!

Acknowledgement

- NASA
- Organizers (Dr. Concha Reid)

Additional Slides

$$R = CH_2$$
-COOH

- Need to use water
- ➤ Can NOT change mechanical properties
- > Fewer # of functional groups

CMC

